НОВОСТИ

 
30 августа 2019 г.

Успехи ДНК-редактирования в медицине зависят не столько от достижений молекулярной биологии в разработке инструментов редактирования, сколько от адекватности выбора конкретных пациентов с конкретными дефектами наследственности. Редактирование генома человека можно начать с гена наследственной глухоты.

Методы целенаправленного изменения определенного участка геномной ДНК известны и успешно применяются уже более 50 лет. Но с начала этого тысячелетия стали активно появляться работы, описывающие улучшенные технологии направленного изменения сложных геномов и основанные на новых методических подходах: гибридные мега нуклеазы; нуклеазы на «цинковых пальцах», технология TALEN; технология CRISPR.

Признанная в 2012 году прорывом года (по версии журнала Science) технология геномного редактирования CRISPR/Cas9 вывела методические приемы на принципиально иной уровень. Внесение направленных и очень точных изменений в генетический код стало воспроизводимой и рутинной процедурой. Уже в 2013 году технологию CRISPR/Cas использовали для изменения генома аквариумной рыбки-зебры Danio rerio, а в начале 2014 года опубликованы результаты экспериментов на обезьянах.

В 2015 году о планах по модификации геномов человеческих эмбрионов при помощи CRISPR/Cas заявили по меньшей мере четыре лаборатории в США, лаборатории в Китае и Великобритании, а также американская биотехнологическая компания Ovascience. В феврале 2016 года группе британских ученых было дано разрешение на генетическую модификацию человеческих эмбрионов с помощью CRISPR/Cas и родственных методов. И наконец, в конце ноября прошлого года на конференции «Редактирование генома человека» в Гонконге китайский исследователь Цзянькуй Хэ объявил о рождении двух девочек-близнецов после успешного редактирования генома и об одной развивающейся беременности после пересадки отредактированных эмбрионов. Научной публикации по общепринятым стандартам он пока не представил, судить о результате можно только по его докладу и предваряющему его интервью.

Направления практического применения технологий геномного редактирования в медицине:

  • Вирусные заболевания (ВИЧ)
  • Онкология
  • Моногенные заболевания
  • Тяжелые комбинированные иммунодефициты
  • Направленные модификации генома человека

Почему глухие

Редактирование генома — это вариант генной инженерии, при котором фрагменты ДНК в геноме можно вставлять, удалять или заменять. По сути, это как текстовый редактор в компьютере, но редактируете вы не инструкцию по сборке шкафа, а инструкцию по «сборке» живого существа. Только нужно ли это делать?

С момента открытия двойной спирали ДНК исследователи и клиницисты размышляли о возможности исправления нарушений в нашей ДНК с целью устранения генетического заболевания. Дело в том, что у людей (как и других живых организмов) встречаются «плохие варианты генов», попадание которых в ребенка ведет к наследственному заболеванию. Заболевание развивается от неправильного текста в ДНК, не той буквы в последовательности гена. Каждый здоровый человек является носителем около пяти таких «плохих вариантов», но лишь в одной копии из двух, поэтому он не болеет. Однако сочетание мутации одного и того же гена от обоих родителей ведет к наследственному заболеванию, и по статистике с наследственным заболеванием рождается примерно каждый сотый ребенок. На сегодня известно более 7 тыс. наследственных заболеваний. Зачатие — это как лотерея, где в среднем вероятность проигрыша невелика (1%), но для конкретной пары родителей она может достигать 100%.

Современные технологии генетического скрининга позволяют предсказать вероятность рождения ребенка с наследственным заболеванием, и если она велика (25–100%), принять меры для отбора (или создания) здорового эмбриона в рамках процедуры экстракорпорального оплодотворения (ЭКО).

Важно отметить, что в подавляющем большинстве случаев никакого редактирования ДНК не требуется! Поскольку для конкретной пары родителей, несущих один и тот же мутантный ген в гетерозиготном состоянии, существует вероятность, что в результате случайного сочетания гамет образуется здоровый эмбрион (эта вероятность, как правило, составляет 25%, 50% или 75%), и достаточно просто выбрать этот здоровый эмбрион при процедуре ЭКО. Такой подход называют «предимплантационной генетической диагностикой».

И лишь в тех редких случаях, когда ни одно сочетание гамет не может дать здорового ребенка, можно обсуждать починку мутации на уровне первой клетки — зиготы. Такое редактирование генома называют «фетальным» (в отличие от «соматического», когда исправляют мутацию в некоторых клетках уже живущего человека).

И таких случаев «необходимого» вмешательства в геном на уровне эмбриона крайне мало! Это случаи, когда оба родителя болеют редким наследственным заболеванием и при этом образовали семейную пару. Практически невероятное сочетание факторов. Но в ряде случаев как раз заболевание работает на объединение таких людей в семьи. Например — глухота.

Люди с наследственной тугоухостью часто образуют семейные пары, поскольку могут общаться на одном языке и понимают особенности друг друга. К сожалению, 80% всех случаев наследственной тугоухости приходится на один и тот же ген (ген белка коннексина 26), и семейных пар с такой мутацией (в гомозиготном состоянии) немало. У таких родителей может родиться лишь ребенок с такой же наследственной тугоухостью. Генетическое тестирование в ЭКО тут не поможет, поскольку все эмбрионы будут с мутацией. Вот в этом случае можно попытаться исправить мутацию еще до переноса эмбриона будущей маме, на стадии самой первой клетки организма — зиготы.

В нашей лаборатории до высокой степени готовности отработаны методики редактирования генома на нескольких моделях: ВИЧ, глухота, карликовость и фенилкетонурия. ВИЧ и глухота — наиболее вероятные ситуации, где их можно будет применить. Более того, уже есть кандидаты на ДНК-редактирование — семьи с глухими детьми, у которых все дети обречены рождаться глухими.

Возможный алгоритм фетальной терапии на основе CRISPR/Cas9

Персонифицированная ДНК-медицина

Очевидно, что для переноса технологии из лаборатории в клиническую практику необходимо выполнить одно очень жесткое требование: доказать безопасность применяемой системы редактирования генома. Дело в том, что исправление конкретной мутации в ДНК не должно приводить к появлению каких-либо иных изменений в других частях генома. Если «генетический редактор» будет работать неточно, последствия могут быть очень печальными.

Кроме этого, первые случаи применения геномного редактирования на уровне зиготы должны быть абсолютно понятны и научному сообществу, и общественности. Областей, где геномное редактирование может быть единственным возможным методом излечения потомства, немного. Во-первых, это ряд аутосомно-рецессивных наследственных заболеваний, как, например, наследственная тугоухость, карликовость, в меньшей степени — фенилкетонурия (из-за наличия эффективного лечения) и небольшой ряд других моногенных патологий. Другой возможный пример — ВИЧ-положительные женщины с плохим ответом на антиретровирусную терапию, планирующие беременность. Для них риск передачи вируса ребенку гораздо выше, чем для нормально реагирующих на лечение ВИЧ+ женщин.

Только после многократного применения в разных точках планеты разными врачами и получения однозначно хороших результатов можно начать думать о применении данной технологии для исправления более частых мутаций, приводящих к развитию мультифакторных заболеваний у людей во взрослом состоянии. Мы могли бы «заранее» чинить предрасположенность эмбриона к развитию онкологического заболевания, раннему инсульту, инфаркту, нейродегенеративным заболеваниям и пр.

К сожалению, система допуска подобных (принципиально новых) препаратов к медицинскому применению на сегодня не проработана и требует уточнения алгоритмов проверки и эффективности, и безопасности. Но в целом можно утверждать, что в любом случае эти препараты будут подпадать под персонифицированные (одобренные к применению для конкретного человека или семейной пары), поскольку геномы людей отличаются и предсказать фоновую активность препарата на данном конкретном геноме без экспериментальной проверки невозможно. Алгоритм применения будет включать полное определение генома будущих родителей и проверку на их собственных клетках и гаметах.

Если же вернуться к исправлению мутаций у уже родившегося человека, то здесь с разрешениями больших проблем не предвидится. Ряд биотехнологических компаний уже ведут клинические испытания препаратов для генной модификации человека на основе CRISPR/Cas как терапии при некоторых врожденных заболеваниях.

Денис Ребриков, доктор биологических наук, заведующий лабораторией геномного редактирования Национального медицинского исследовательского центра акушерства, гинекологии и перинатологии им. В. И. Кулакова

Источник: Коммерсантъ

Есть вопрос или комментарий?..


Ваше имя Электронная почта
Получать почтовые уведомления об ответах:

| Примечание. Сообщение появится на сайте после проверки модератором.


Вернуться в раздел НОВОСТИ

Регистрация ЛСCRO Биоконсалтинг предлагает любые виды услуг по юридическому оформлению лекарственных средств на территории РФ....
Открыть раздел Регистрация ЛС
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Подработка для студентов! Участие в медицинских-научных исследованиях. Исследования проводятся в течении 4-х дней (2+2 через 2 недели) (оплата от 3 000 рублей в день)....
Открыть раздел Вакансии
ЦТМ г.СухумЦентр трансляционной медицины (ЦТМ) «Биоконсалтинг» г....
Открыть раздел ЦТМ г.Сухум
Политика в области качестваОсновная цель деятельности Общество с ограниченной ответственностью «Биоконсалтинг» (далее ООО «Биоконсалтинг») – проведение токсикологических,...
Открыть раздел Политика в области качества
The LineAct Platform